Extending Mirror Conjecture to Calabi-Yau with Bund
نویسنده
چکیده
We define the notion of mirror of a Calabi-Yau manifold with a stable bundle in the context of type II strings in terms of supersymmetric cycles on the mirror. This allows us to relate the variation of Hodge structure for cohomologies arising from the bundle to the counting of holomorphic maps of Riemann surfaces with boundary on the mirror side. Moreover it opens up the possibility of studying bundles on Calabi-Yau manifolds in terms of supersymmetric cycles on the mirror.
منابع مشابه
Extending Mirror Conjecture to Calabi-Yau with Bundles
We define the notion of mirror of a Calabi-Yau manifold with a stable bundle in the context of type II strings in terms of supersymmetric cycles on the mirror. This allows us to relate the variation of Hodge structure for cohomologies arising from the bundle to the counting of holomorphic maps of Riemann surfaces with boundary on the mirror side. Moreover it opens up the possibility of studying...
متن کاملar X iv : m at h / 01 11 11 1 v 2 [ m at h . D G ] 2 5 Ju n 20 02 Lectures on special Lagrangian geometry
Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...
متن کاملov 2 00 1 Lectures on special Lagrangian geometry
Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...
متن کاملMirror Symmetry of Fourier-Mukai transformation for Elliptic Calabi-Yau manifolds
Mirror symmetry conjecture identi es the complex geometry of a CalabiYau manifold with the symplectic geometry of its mirror Calabi-Yau manifold. Using the SYZ mirror transform, we argue that (i) the mirror of an elliptic Calabi-Yau manifold admits a twin Lagrangian bration structure and (ii) the mirror of the Fourier-Mukai transform for dual elliptic brations is a symplectic Fourier-Mukai tr...
متن کاملGeometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)
In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...
متن کامل